得益于长征5号的研发成功,我国航天最近能够把大重量的东西送上太空,所以最近看到了一系列的突破。比如登陆火星,比如空间站,比如月球挖土。
当然这些只是在重复做美国人曾经完成过的事情,我们既然现在有技术有资源为什么不尝试一下前所未有的探索呢?
这是我的一个理想,那就是在月球上建造一个可以住人的基地,甚至建立一座微型的城镇村庄。这并不是科幻,离我们一点都不遥远,只要利用现有的技术是完全可以实现的,可以说只是一个工程问题。
首先我们看现有的空间站,其实已经很大了,至少有几辆大巴车那么大小,是可以住好几个人的,我们在月球上建立基地,第1步也可以把类似的东西发射到月球上,一个一个组装起来,就像现在空间站上用的技术是一样的。
这里最重要的问题要解决的就是能源和材料这样的问题,包括物质。比如说建造,我们想大规模的建造一个类似于购物商场那么大小的基地的话,那么完全从地球上发射是不太现实的,但是我们可以利用月球上已有的物质,看看能把一些什么机械设施发射上去,在月球上就可以采矿,并且制成铁各种各样的金属。进一步可以用来构造基地自身。这样子只需要发射一部分工具,然后利用这些工具开采加工月球上的物质,这一切可以通过几个航天员远程操控的无人机械进行。
先看看现在最需要解决的能源问题,我们可以用几个太阳能板来产生一定的电量,现在空间站就是这样工作的。它的问题也很大,因为能量输出实在是太小了,只是简单的提供一些生命支持,如果进行大规模的工业活动肯定是不够的。
那么我们能不能发射一个核反应堆到月球上呢?这是一个很值得考虑的问题,至少在看来是可以解决的,我们可以把反应堆做得很小,至少目前我们已经在核潜艇上用一些小型的反应堆了,它只有几十吨,而且大小也不是特别大,可能直径只有八九米的样子。而且他这些大小大部分都是外面的屏蔽壳来屏蔽辐射,用来屏蔽辐射的真正核心部分,反应堆的核心并没有多大,而且我们还可以拆分开来,反应堆,燃料以及其他一些组件单独发射,然后到月球上再进行组装。
事实上在月球上的核辐射并不是一个什么问题,因为月球没有大气层,而且受到太阳风等各种各样宇宙粒子射线的影响,月球每天都接受大量的辐射,所以说核反应堆完全不用太考虑保护怎么把这些辐射给屏蔽掉,月球不是地球,宇航员出门都是要穿防辐射的航天服,我们的空间站本身也要是防辐射的。

近几年很多企业以及科研院所都在研发小型核反应堆。比如劳斯莱斯,最近报道说他们在研发一个小型核反应堆,目的就是到月球上去采矿。他们一直做飞机发动机以及核潜艇反应堆好多年了,所以在这方面应该有很多经验。核反应堆的微型化是一个很重要的趋势,毕竟如果能把它塞进汽车集装箱,而且能提供大量足够的电力的话,无论是在军事还是民用救灾等方面,都有很大的用处。当然前提是保证核燃料的安全性。

如果有一定担心的话,在月球上我们可以给核反应堆打造一个适合的地形。比如挖一个大坑专门放置它,这样可以挡住它水平方向的辐射,朝着太空的辐射,我们是可以不用管的。这个核反应堆可以放在我们月球基地几公里之外,通过线缆把电力输送到基地就可以了。考虑到冗余备份,可以多建几个类似的反应堆电站,即使一个不工作也不影响基地的正常运行。
一个潜艇的核反应堆大致有几百兆瓦的功率,我们其实可以把这个功率做得更小一些,只要有几十兆瓦甚至几兆瓦的功率就够了。前期可以建设一个几十人的基地,这已经不少了,现在的国际空间站最多也就容纳七个人而已。

我们可以先发射一些类似挖掘机等机械装备到月球上。有别于传统的挖掘机,我们把它做成电动的。因为月球表面是崎岖不平的,我们可以采用坦克那样的履带以及其他一些技术使他拥有全地形通过能力。现在电动汽车上面的电池,比如说像特斯拉的电池大致有将近一吨的重量,能提供四百多公里的行驶里程。直接把这些电池模块移植到这些挖掘机上,能够给提供几个小时的工作时间就够了。当然我们可以把电池做得更大一些也行,这样子的话没有必要,这都是权衡取舍了,到时候可以做成模块化的设计。
如果能在这些挖掘机上做一个驾驶室,就像航天服一样封闭的且含有氧气,工作人员可以直接坐在里面操控挖掘,那就是最好了。但如果这些需要的空间太大或者说重量太大以至于不划算的话,也可以做成远程遥控的,可以让工作人员在一个专门的通行车辆上,在它几十米上百米远的地方进行遥控操作也可以。
可以利用这些机械在基地周围往外修建道路,这里所谓的道路是指削峰填谷,把路铺平可以通过履带式的机械即可,没必要像地球上的路那样规整。
月球上有丰富的稀土元素,以及我们未探索的各种各样的矿产,这些矿产有可能包括铁矿啊以及各种各样的稀有金属。对我们来说,前期最重要的我们可以找到一些小型的铁矿或者什么之类的。开采这些铁矿,并且把他们提炼成钢铁。这些钢铁可以用来建造我们的月球基地,这样子的话我们可以把月球基地建得很大很大,比如说达到一个购物商场的大小,或者构造很多类似的建筑单元通过管道把他们连接起来,把这些各种各样的单一的建筑体组成一个小型的村镇。
在月球上建立一个炼钢厂是一个挑战,毕竟没有大气不同于地球的环境,而且我们可以使用的能量只有电能,同样月球上的铁矿石的化学成分跟地球上的可能有些区别,所以钢厂的结构和原理会有很大的不同。不过,在理论上是可行的吧,有时间可以仔细研究一下。

有了钢铁,我们就并且能把月球建设的很大,利用钢铁焊接起来的密闭房屋,里面充入合适的大气,人类就可以居住了。如果空间够大,可以在里面通过灯光建立室内农场,种植一些蔬菜。我们只要给基地送上去几十年的粮食,就足够维持运转了。更进一步,可以种植一些粮食作物,小麦水稻当然好,但是需要的空间大产量低,最好的选择是种植红薯和土豆,如果规划得当可以给基地提供自给自足的食物供应。在电影火星救援里面,主角就是依靠在火星上种土豆进行生存的。

以目前长征五号的运载能力,还不足以实现登月。现在正在研发中的长征九号就是专门为登月研发的一颗火箭,它的研制成功才能实现我们载人登月。所以还要等好几年。不过据报道,长征九号的研发现在加快了速度,改为多个成熟发动机捆绑的形式而不是当初的单一大推力发动机,这类似于spacex的玩法。时间方面应该比重新研发一个新型发动机要快不少,毕竟稳定性测试需要花大量时间。

空间站是个很好的东西,当年前苏联就得出论断,认为登上月球没有太大实际意义,而地球近地空间站可以进行各种各样的观测和科研,还有一个失重的环境可以进行各种各样的实验,他们给出的综合结论就是发展空间站是更划算更经济的一种方式。

但是月球基地不同于简单的登月,同样也有它的优势。首先没有大气层有利于科研观测,而且月球上有各种各样的矿产资源可以进行开采,如果有足够的矿产燃料各种各样的东西开采出来的话,甚至我们都可以在月球上直接建一个发射基地,火箭之类的大部分都可以直接用月球上开采的元素来进行建造。比如说去火星的话,从月球进行发射,它的成本比地球要小很多很多,因为月球的重力很小。

月球上有重力,而且这个重力不大是地球的1/6,这很重要,因为我们普通人类可以在上面背负更多的重要的东西,比如说航天服可以做的很重,可以装上去更多的能量和氧气燃料,这样子的话就可以走很远,而且人类在上面可以跑得很快很远,这是一个优势。有重力的话就不用考虑各种各样失重情况下需要担心的比如说航天服离开了空间站飞走了就回不来了等问题。月球基类似与地球的环境,只不过重力减小而已,可以慢慢到处走。

从我们现有的技术来看,没有任何科幻的元素,都是已有的已实现的,我们可进行工程化的东西。建造一个类似于一个村镇的大小的聚集单位,比如说容纳几百人上千人都是可能的。我们可以在月球上建立真正的人类永久驻扎的基地。
如果月球上能够实现粮食自给自足,那就更好了,一旦真正自给自足的闭环能力可以得以形成,月球基地就可以脱离地球的补给而单独存活,甚至发展成为人类的一个月球分支。当然前提是月球月上有足够的核燃料,以提供核反应堆的持续运行,而且月球上的人需要学习大量的知识,把他们维护起来。

1970年左右,美国国力处于巅峰时代,他们进行了登月,而且实现了一系列的成果,今天人类虽然在机械和能量燃料方面没有什么推进,理论上也没有大的突破,但是很多应用技术已经有了飞跃。主要代表是集成电路芯片的发展带来的一些微型控制器和通信技术。
比如说控制器,当时的芯片跟现在的芯片数字化控制技术简直是天壤之别,当时飞船上的阿波罗计算机只有2k的内存,72k rom,使用汇编编写控制代码,现在随便拿个stm32都能秒杀它。
甚至现在都可以看到国际空间站里的一些模电时代的仪表盘,而中国的空间站里全部都进行了数字化,提升还是很大的。
另一方面的大量进展是在通信技术上,举个例子,得益于数字基站,我们空间站的宇航服就是通过CDMA跟空间站来通讯的,可以直接传递音视频和控制指令。比当初的短波模拟信号通信强大很多。
不得不佩服当年的登月,原始的计算机加上一行行汇编代码,都实现了这样的壮举。
另一个则是这些年电池技术的发展,不讲成本的话其实已经可以实现各种各样的电动机械了,加上其他一些化工和材料方面的进展,其实现在实现登月的条件要比1970年左右好太多了,这也使得月球基地的建设成为可能。

今天,中国的国力已经超过当年登月时的美国了,而且还在持续增长当中。加上人类技术进展的加持,可以实现的远比当年多得多。按照我们目前的航天规划,是有在月球南极上建立一个基地的打算的。我个人觉得,除了简单的科研基地以外,可以分阶段分步骤,把目标和计划制定的更宏大,更长远一些。

简单重复的实现登月只是在重复美国人伟大的成就而已,如果我们真正能够建设成月球基地并且进行采矿等一系列操作的话,这将是人类史无前例的壮举,才是真正引领人类科技探索的未来。

有生之年,我们很可能看到这一切都成为现实。

这几天郑州暴雨,各种画面视频令人触目惊心。

洪水在河南自古就是不断重复的灾难,这一点在各种史书里都可以找到记录。

不过,在我的记忆里,小时候雨下的最大的时候,也就是把沟道河流填满,没有那种所有地方都淹没很深的大水。也许是概率吧,攒了多年,终于暴发了一次。

今天随便写点,不讨论自然灾害,就简单的记录下我的一些思考。

这次破纪录的一小时降水超过200毫米,超过所有中国陆地降水量的极值。

为什么郑州会下这么大的雨?为什么降水更多的沿海城市比如深圳上海没有这么大的雨呢?那些沿海城市因为台风导致的暴雨难道不应该更大吗?

这是我心里的疑惑,也一直在思考答案。下面写的,都是个人的一些想法观点,并没有花大量时间精力去做科学的研究论证,看看就好,没必要较真。也许将来有大把的空闲时间了可以再去做更细致的研究,今天写下来只是记录一下自己的想法思考,方便将来翻阅备忘。


先看一下年平均降水量,郑州大致在600多毫升左右。作为对比,我们拿深圳来举例子,深圳的年平均降水量大约是1900多,大致有三倍的样子。

这样看来,深圳确实降水比较多。

然而,下的多并不意味着短时间内下的大。就像跑步,跑得远并不意味着短时间内跑得快。

可为什么深圳瞬时雨量不够大呢?

我们先看看降水是如何形成的。

通过蒸发,大量的水蒸气进入空气当中,这些含有水汽的空气形成所谓的云,当他们与冷空气相遇的时候,水汽凝结,就形成了雨滴。

先给出一个简单的规律:

空气中储存的水汽多少跟温度有关,温度越高,能储存的水汽量越大。

这个比较容易理解,比如冬天嘴唇容易干就是因为温度低空气里的水分较少。

再比如夏天,我们从冰箱里拿出一瓶啤酒,过一会啤酒瓶上就会布满了水珠。这是因为夏天空气温度高,含水汽量高,而刚拿出的啤酒温度低,它会导致周边的空气温度降低,低温空气储存不了那么多的水汽,就凝结析出了。

降雨的过程跟这个也差不多,南方从海洋上吹来的风饱含水汽温度高的空气,突然遇到从北方吹来的寒冷空气,形成对流并向上抬升,迅速凝结,就形成了降水。

当然降雨除了这种,还有一种是被山坡抬升导致的。抬升过程中,海拔越来越高,空气温度开始降低,而且大气压大气密度也在降低,导致储水量更低,于是水汽凝结降雨。

降雨的大小取决于什么呢?当然跟空气中的水汽储量有关系。同时,也跟对流空气的温度差有关系,就像我们从冰箱里拿出的啤酒,温度越低凝结的水滴也就越多。

其实理解了这个原理,很多问题就比较容易推出结论了:

  • 瞬时降雨的大小取决于空气中水汽的储量密度以及对流温差强度
  • 空气中的最大水汽储量密度取决于温度。

所以,瞬时降雨的大小取决于当地最高温度,因为这决定了空气中水汽储量的上限。

我们看一下各地的最高气温,这都有气象数据可以查到。深圳夏天大致在30多左右,其实并不算热,主要是潮湿。因为靠海的缘故,热量大部分用来加热海水蒸发。

河南这种内陆平原就不一样了,阳光照射大地全部用来加热,温度甚至都能到40度以上。夏天三十七八度很正常。

忘了在哪看的说每升高一度水汽储量增加7%,我没有去仔细查证,但是感觉增长曲线不一定是线性的。

可以认为,郑州的温度甚至可以比深圳高10度左右,这带来的水汽储量差别是巨大的,这也导致郑州暴雨的上限要远比深圳高。

同时,北方过来的冷空气到河南的时候温度要比到深圳的时候更低。因为横跨中国大陆的过程中它们可能慢慢被传递热量升温。这样看来河南这边的对流温差强度大的概率更高。

水汽含量高,加上对流强度更高,所以,北方内陆出现瞬时大暴雨的可能性其实远比沿海城市要高。

在北方,暴雨的危害主要来自于猛涨的水位无法快速流走。雨过之后,洪水往往快速消退。并不会形成长时间的内涝,地面很快就恢复了干燥。

来自海洋的水汽进入内陆平原,如何不停的积聚,以及受到冷空气对冲、山坡的阻拦等产生各种运动和交互的细节,可以看作一个随时间变化的气流运动。要去模拟这些空气的气流是十分复杂的,它是三维变化的,通过数值模拟计算的话要牵涉到大量的微分方程,各种各样的参数,且很容易被一些细小的因素参数影响。所以天气预报往往需要超级计算机去模拟计算,也很难做到精准。不过鉴于天气预报都搞了这么久了,气象学应该有一个简单可以用的模型吧。等将来有大量空余时间了再去仔细搜索研究下。

需要指出,并不是温度高了,空气中的含水量就高,只是说明储存的能力变多了,需要水汽不停的蒸发或运输进来才相应的增多。西北沙漠地区就是个例子。

我们把空气中的水汽含量的百分比称为相对湿度,数值范围在0%到100%,分别对应完全没有以及水汽饱和。这个数值可以代表我们人体对潮湿的一种感觉,太干太湿都会觉得不舒适,看天气的时候可以注意一下这个数值。

记住,相对湿度在不同温度下真实含水量的绝对值是不一样的,它代表的只是水汽饱和度百分比。所以,冬天的80%可能比夏天的40%含水量更少。

好了,大致就这些,概括一下,可以认为全文只有一句话:温度上限决定暴雨大小的上限。